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The high- and low-energy limits of a chain of coupled rotators are integrable 
and correspond respectively to a set of free rotators and to a chain of harmonic 
oscillators. For intermediate values of the energy, numerical calculations show 
the agreement of finite time averages of physical observables with their Gibbsian 
estimate. The boundaries between the two integrable limits and the statistical 
domain are analytically computed using the Gibbsian estimates of dynamical 
observables. For large energies the geometry of nonlinear resonances enables the 
definition of relevant 1.5-degrce-of-freedom approximations of the dynamics. 
They provide resonance overlap parameters whose Gibbsian probability dis- 
tribution may be computed. Requiring the support of this distribution to be 
right above the large-scale stochasticity threshold of the 1.5-degree-of-freedom 
dynamics yields the boundary at the large-energy limit. At the low-energy limit, 
the boundary is shown to correspond to the energy where the specific heat 
departs from that of the corresponding harmonic chain. 

KEY WORDS: Gibbs ensembles; coupled rotators; resonance overlap; large- 
scale chaos; relaxation to equilibrium. 

1. I N T R O D U C T I O N  

A key q u e s t i o n  in s t a t i s t i ca l  phys ics  is to  k n o w  w h e n  t i m e  a v e r a g e s  of  

phys ica l  o b s e r v a b l e s  ag ree  w i th  s t a t i s t i ca l  a v e r a g e s  p e r f o r m e d  in the  su i t ab l e  
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ensemble. Moreover, in many applications (e.g., in molecular dynamics 
simulations ~ )  one needs a fast relaxation in time with a limited number of 
degrees of freedom. From the point of view of the theory of dynamical 
systems this corresponds to knowing what degree of chaos is needed to 
enable a generic orbit to sweep sufficiently the phase space in a short time 
("large-scale" chaos). This is a very difficult question to establish in high- 
dimensional Hamiltonian systems. 

Quite recently, numerical simulations were devoted to exploring this 
problem, controlling at the same time the degree of chaos through the 
measurement of the spectrum of Lyapunov exponents. No conclusive result 
was reached on the delimitation of the region of agreement between time 
and ensemble averages. ~2~ In order to make some progress, it is necessary 
to choose an appropriate model for which the knowledge of the geometri- 
cal properties of the phase space can be pushed as far as to understand the 
onset of "large-scale" chaos. To this end we have chosen a model of 
nearest-neighbor coupled rotators on a 1D lattice. ~3) 

Following the path opened by Nekhoroshev and Chirikov ~4~ in the 
geometry of resonances, we have introduced a low-dimensional approx- 
imating Hamiltonian for this model, which turns out to describe quite well 
some low-dimensional aspects of the high-dimensional motion at large and 
intermediate energies. This Hamiltonian leads us to introduce an appro- 
priate overlap parameter which enables us to delimit from above the energy 
region where ensemble averages of some physical observables agree with 
time averages. More precisely, one can compute the probability distribution 
of the overlap parameter in the canonical ensemble and determine, in a 
statistical sense, the upper energy boundary of the region of "large-scale" 
chaos using a simple Chirikov overlap criterion combined with a canonical 
ensemble calculation. The lower-energy boundary can be estimated by a 
heuristic reasoning involving the onset of nonlinear effects. 

In Section 2 we introduce the model, show the result of the calcula- 
tions of equilibrium energy density and specific heat, and compare these 
results with those obtained from time averages. In Section 3 we present a 
qualitative description of the dynamics of the perturbed pendula which 
constitute the chain of rotators. Section 4 is the core of the paper; here we 
present in detail the canonical transformation which permits the selection 
of the low-dimensional aspects of our high-dimensional system. Section 5 is 
devoted to the numerical investigation of the effect of clustering of local 
resonances. In Section 6 we obtain the main result of this paper by com- 
puting the probability distribution of the overlap parameter. In Section 7 
we present some conclusions and perspectives for future investigations. 
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2. THE MODEL,  GIBBS AVERAGES, AND T I M E  AVERAGES 

Let us consider the Hamiltonian 

H= ~ {P-~+[1-cos(qi+l-qi)]}=K+U (2.1) 
i=l 

with periodic boundary conditions 

q l = q u + l ,  Pl =Pu+l (2.2) 

K and U stand for the kinetic and potential parts of H, respectively. In all 
the simulations the total momentum of the chain is set to zero for to both 
prevent center-of-mass motion and agree with the assumptions of our 
Gibbs calculations. 

The Hamiltonian (2.1) describes the motion of a system of N coupled 
rotators and can be thought of as describing the nontrivial conservative 
dynamics of a one-dimensional XY model. Dissipative Langevin dynamics 
and Monte Carlo dynamics are known to relax rapidly to statistical equi- 
librium in one dimension, while conservative dynamics like (2.1) are 
generally not ergodic. 

We introduce Gibbs averages through the canonical partition function 

Z= f H dqidpi e-#H (2.3)  
i 

where fl is the inverse temperature /3 = T-~ and the Boltzmann constant 
ks = 1. Livi et aL ~2) showed how to perform the calculation of the average 
potential energy density 0 and of the specific heat at constant volume Cv. 
We recall here only the result of this calculation: 

U =  1 I,(~) 
Io(/~) 

Cv=-~+ l /~1o(/3) \ / o - -~ ]  ] 

(2.4) 

where Io, I~ are modified Bessel functions. The results in formulas (2.4) 
are independent of the ensemble in the thermodynamic N ~  ~ limit; in 
particular, they stay the same in the microcanonical ensemble. Finite-N 
corrections can be computed t2) and are generally negligible for the N values 
we use in numerical simulations. 

Time averages are instead naturally performed in the microcanonical 
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ensemble for conservative systems. A time-dependent temperature T(t) is 
defined through the average kinetic energy 

( K )  T(t) = 2 - -  (2.5) 
N 

where the symbol ( . )  stands for the finite time average ( . )= (t) -~ ~'o" dt'. 
Analogously one defines the average potential energy ( U ) / N .  The time- 
dependent specific heat at constant volume Cv(t) is given by the fluctua- 
tions of the kinetic energy tS~ 

~v(t)=l ( 1-N ~ f Y  j (2.6) 

In ref. 2 the specific heat was computed from the total energy fluctuations 
of a small part of the chain, mimicking a canonical ensemble calculation. 
This latter method is affected by larger fluctuations and we have preferred 
here the definition (2.6). In principle, the two methods cannot give the 
same result if the system is not ergodic. 

These quantities should agree with canonical averages [Eq. (2.4)] 
after the double limit N, t ~ ov is performed. This limit is impossible to 
realize in numerical simulations; therefore one is interested to know for 
which values of N and t one obtains a good agreement with canonical 
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Fig. 1. Plot of Cv and ( U )  vs. T. Numerical estimates: Cz ([~) and ( U )  (C,); Gibbsian 
predictions (--) .  
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averages. For the model under examination the value of N is not crucial: 
one obtains a good agreement over a large intermediate temperature region 
(0.1 < T <  10) for moderate values of N, N ~  100. This is an indication that 
a statistical regime exists. In Fig. 1 we report the result of canonical and 
time averages of the internal energy and of the specific heat for N = 128 as 
a function of T at t = 35,000. Statistical fluctuations are of the size of 
the symbols in Fig. 1, but a slow relaxation is present at large and small 
temperatures. Increasing N does not improve significantly the result at 
small and large temperatures. 

3. R E L A X A T I O N  A N D  D Y N A M I C S  

A crucial role in the qualitative description of the motion is played by 
the temperature T. It is proportional to the energy density H/N (an exact 
relation can be found which links the two quantities at equilibrium~6~), and 
appears obviously in all the formulas concerning Gibbs averages, but it is 
also a natural control parameter for the characterization of the motion. If 
T>> 1, then ( K )  >> ( U )  and the rotators decouple and move freely. Hence, 
we define the weak-coupling regime by the condition T~> 1. On the contrary 
if T.~ 1 the kinetic energy is not enough to excite large-amplitude motion 
of the rotators and we are therefore in the limit of almost linearly coupled 
oscillators. We call this limit the strong-coupling regime. In both limits our 
model is nearly integrable, although the action-angle Hamiltonian is 
different in the two limits (quadratic in the actions at large temperature 
and linear at small temperatures). This makes the analysis quite different. 

Coming back to the reproduction of Gibbs averages, it is clear that it 
is exactly in these two limits that relaxation is slow. In fact, the time needed 
to reach the ensemble average becomes very large in the small- and large- 
temperature regions. More precisely, the specific heat Cv(t) shows a slow 
relaxation in time at temperatures T below the boundary to the strong- 
coupling region, which is placed at Ts~0.1. The internal energy badly 
converges at temperatures larger than T,,. ~ 10; they both show a fast relaxa- 
tion at intermediate temperatures (the subscripts w and s indicating the 
weak- and strong-coupling limits, respectively). For small T the agreement 
with the Gibbsian estimate of the average potential energy derives trivially 
from the linear virial theorem. Analogously for large T the kinetic energy 
has small relative fluctuations, which imply the Gibbsian value 0.5 for the 
specific heat. In Fig. 2 we show the convergence time t., of ~v(t) and of 
( U ) / N  to within x percent of the Gibbsian estimate for several values of 
x. The convergence time changes significantly in the vicinity of Ts and T,,.. 
In the following we discuss the dynamical explanation of the good con- 
vergence of physical observables in the statistical regime, i.e., T,. > T> T.,., 
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Fig. 2. Plot of first time t ,  when the numerical estimates of C v ( T <  1) and ( U ) ,  (T>  5) 
reach the Gibbsian prediction up to an x % error: x = 20 % ( + ), x = 10 % (x), x = 5 % ( O ), 
x = 3 %  (,),  x = 2 %  (El). The upper point to the left is a lower bound. 

and show that a Gibbsian calculation predicts the existence of the bound- 
ary temperatures T,,. and Ts. 

Let us introduce the following variables for a fixed pair of rotators: 

It __Pi+ t - - P i  

~rll _ q i  + 1 - -  q i  

(3.1) 

whose appropriate meaning and relevance will become clear in the follow- 
ing. Numerical simulations performed with random initial conditions show 
that an orbit in the restricted phase space S~ =(~U~(mod 2 x/~n) ,  I~), of 
each pair of neighboring rotators may result in a libration inside a 
"separatrix," a rotation outside it, or an alternation of rotation and libra- 
tion during time evolution, depending on the temperature. These are 
typical situations for a perturbed pendulum. Some typical orbits in S, 
are reported in Fig. 3. We can distinguish three different regimes from 
numerical simulation: 
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Fig. 3. Typical librating (a), rotating (bJ, and separatrix crossing (c) orbits in the restricted 
phase plane St. We plotted 2500 points stroboscopically at fixed time intervals At = 0.05 for 
N = 16, T ~  61.1 [(a) and (b) correspond to two different pairs of the same run],  and T ~  5.2 
[part (c)]. The separatrix width is 2 and in (c) the orbit was started outside of it. The spread 
of the points is mainly an effect caused by the stroboscopic view. 

�9 Weak-coupling regime T >  1. Each pair of rotators remains either 
in rotat ion or in libration for a very long time; "separatrix" crossing is very 
rare. The system is frozen in the initial state. 

�9 Statistical regime Ts < T <  T,.. The restricted phase space of each 
pair shows alternation in time of rotat ion and libration; "separatrix" 
crossing is frequent and happens more or less randomly in time. 



612 Escande e t  al. 

�9 Strong-couplhTg regime T,~ 1. Each pair goes in libration inside the 
"separatrix" for any initial condition. 

Below we shall call a pair active if its motion is a libration in S~. The 
approximation that we develop in the following enables us to interpret this 
result and to obtain a precise definition of what up to now we have loosely 
called "separatrix." In particular, starting from the observation that in the 
weak-coupling regime it is natural to single out a series of pendula (primary 
resonances)14.71 related to the N cosines of Hamiltonian (1.1), it is possible 
to obtain an approximating time-dependent Hamiltonian which describes 
the motion of a pair of rotators on a finite time span. 

4. THE R E S O N A N C E  F R A M E  

It is our aim to find an appropriate canonical change of variables 
which separates slow from fast motion and reduces the effective number of 
relevant degrees of freedom. More precisely, our goal is to reduce the 
complexity of the motion to that of a single perturbed pendulum, which is 
the typical feature of the dynamics we observe in S~. 

It is clear that to reach this result the relevant canonical coordinates 
are the differences in angles (q i+~-qi ) .  To obtain some hints on the con- 
struction of the canonical transformation that we have to perform let us 
consider the integrable case of two rotators, i.e., the Hamiltonian 

H=P~ + P~- 
2 COS(ql--q2) (4.1) 

There are in this case two degrees of freedom and two constants of motion 
in involution: the Hamiltonian itself and the total momentum P=Pl +P2. 
Thus, the model is integrable and we can isolate the single resonance from 
the fast free motion. In the weak-coupling limit the constant-energy E 
surface is a circle of radius (2E) t/2 in the (Pi, P2) plane: the resonance line 
Pt =P2 is the bisectrix of the first quadrant. To isolate the "pendulum" 
Hamiltonian we follow a geometric idea. We perform a pseudorotation (in 
fact a unitary transformation with determinant - 1) by M4 of the (pi ,  P2) 
reference frame and a shift of its origin by the average momentum 
p ,  = (p~ +p2)/2 in order to represent the sphere in the new action coor- 
dinates I = (It ,  12) as a paraboloid which, in the I~ direction, has a func- 
tional representation beginning with a quadratic term. The new angles 

= (71, ~2) are defined by the same pseudorotation. Thus 
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Pl = P ,  + (12 - I1 )/x/~ 

P2 = P ,  + (I2 + 11)/x/~ 

~, = (q2-q l ) lw/~  

~2 = (q,_ + ql )/x/~ 

(4.2) 

It is easy to verify that this is a canonical transformation with generating 
function 

I 
F(I, q ) = P , ( q l  + q 2 ) + m  [ I i ( q 2 -  

and the new Hamiitonian is 

q~)+12(q2+q~)] (4.3) 

H = Hi + H2 (4.4) 

with 

H1(I1, ~U,)  = 1 2 / 2  - cos(x/~ ~l) 
H2(I,_) =p2, + x / ~ p , i  2 + I~/2 

(4.5) 

Hj corresponds to a pendulum whose phase space display a "cat's eye," the 
signature of a nonlinear resonance. H2 is separately integrable since it 
depends only on actions. Thus 

~ 2 ( , )  = , , /2  p ,  t + 12(0) 
(4.6) 

I2(t) = 12(0) 

represents a fast free motion. 
For higher dimensions (N~>3) Hamiitonian (1.1) is no longer inte- 

grable. The primary resonance conditions PJ=Pi+ l define a net of hyper- 
planes which intersect the unperturbed energy hypersphere in action coor- 
dinates in the weak-coupling limit, thus leading to a much more complex 
situation. However, we may try to retain the geometrical image that we got 
from the two-dimensional case and define a direction orthogonal to the 
hypersphere living on the hyperplane Pj+l =Pj  of the j th  primary resonance 
and study the motion close to this resonance, i.e., we choose a pair of 
rotators satisfying the resonance condition. Since the hypersphere is locally 
a hyperparaboloid, it is the new angle variable ~u 2 conjugated to the new 
action 12 defined along this direction which develops fast motion, and will 
play the role of time in our approximating Hamiltonian. In the hyperplane 
of codimension one orthogonal to this direction an "eye of cat" will open, 
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but now the phase of the cosine will in general depend on all degrees of 
freedom. Hence, we have to choose our unitary N x N matrix representing 
the pseudorotation in order to minimize the influences of the other degrees 
of freedom. In the following we give a first recipe for the construction of this 
matrix. 

We perform the following canonical transformation: 

(p, q) --, (I, W) (4.7) 

whose generating function is c4~ 

F(l ,q '=~(P" '+~lkl lk , )q ,=(P'r '+l lJ 'q  (4.8) 

where the row "resonance" vector p~rl defining the direction orthogonal to 
the unperturbed energy hypersphere (and whose squared modulus is of 
the order of the unperturbed energy) and the matr ix/ i  have to be chosen 
in an appropriate way. We do not expect the approximate Hamiltonian 
to remain valid for all times. Therefore we define a sequence of times 
( t l ,  t2 ..... t ..... ) at which we fix both pl'~(t,) and /J(t,,), and thus the 
canonical transformation, by the rule we give in the following. The 
approximating Hamiltonian H(t, t,,) will be used in the time interval 
[t,,, t ,+  1] and the rule for passing from H(t, t , )  to H(t, t ,+  1) will also be 
given. 

The change of variables defined by the canonical transformation (4.8) 
is 

OF p ='~q = p'r' + l/J 

OF 
= ~ =/.iq (4.9) 

We have first to define the resonance vector. Let us consider the momentum 
vector p at the fixed time ~,,; then p~'~ is defined as 

p4rl= (p1(%,), p2(r,,) ..... pj_,(T,,), p, ,  p, ,  Pj+ 2(%) ..... PN(Z,)) (4.10) 

where the average momentum (no longer conserved) is 

PJ+ t (r") +PJ(%) (4.11 ) 
P * =  2 
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For the matrix/1 we require the following properties: 

�9 /1 is unitary. 

�9 Let Rk be the set of orthonormal row vectors of/J; then one of these 
vectors is defined in terms of p('), 

R 2 = (0 ..... 0, pj_  l('L'n), P s '  P * '  P / + 2  (Tn)' 0 ..... 0)/,/t fl (4 .12)  

where 

~: = [p~_t (~.) + 2p. + p:+ 2(~,,)-] i/2 (4.13) 

Equations (4.10)-(4.13) define completely what we call the "resonance 
frame" depending on the time z, at which it is fixed. 

The choice (4.12) can be justified by the following argument. In the 
statistical regime, the (I~, ~u~) dynamics looks numerically quite similar to 
that of a pendulum perturbed by a time-dependent potential: chaotic 
"separatrix" crossings occur, and are presumably related to the existence of 
stochastic layers close to resonance hyperplanes. The origin of this low- 
dimensional behavior may be suspected to stem from nearby resonances, 
i.e., from resonances produced by the cosines with arguments where qj and 
qj+~ are present. Hamiltonian (1.1) has only two such resonances: those 
with indices j -  1 and j +  1 (encompassing four degrees of freedom from 
j -  1 to j +  2). Thus we account only for these resonances and this leads to 
definition (4.12). In the case where pj+ i(r,,)=pj(r,,), R 2 is the projection of 
the normal to the unperturbed energy surface onto the momentum sub- 
space with indices i = j -  1,..., j + 2. 

We are now left with the choice of the other row vectors {Rk, k:~2}. 
A natural form for a normalized row vector orthogonal to p(r) is the 

following: 

1 1 0)  (4.14) . ,  = ( 0  ..... ..... 

where the j th  and ( j +  1)th components only are nonzero and opposite. 
This implies 

~ul(t) = R l . q =  x//- ~ 

~2(t, r  R 2 -q 

qj+,(t)-qj(t) 

(4.15) 



616 Escande et  al. 

Moreover, 

Ii(t) =PJ+ l(t) -pj(t) 

I2(t, %) = [p(t) -- pl~)] �9 R2 
(4.16) 

Let us observe that I2(r,,, ~,,)= 0. 
After making explicit the canonical transformation for the angles one 

obtains the following Hamiltonian in terms of the new variables (I, W): 

ID(~)I 2 1 
nit, H, + g + 

~l(t)  1 -- COS -----~--+ 09 + ('c,,) ~2(t, T,,) + p + (t, "c.) 

--COS [--~l~(~t)+ co-(r . )~2(t ,  ~ . )+  p-(t ,z .)  1 
`/2 

(4.17) +a~" 

with H~ given in (4.5) and where 

p+(t, z.)=qj+2--qj+ 1 + ~ l ~ ) - -  ~ ~2 
,/2 

p_(t, z,,)=qj-qj_ 1 + ~l-~(t~)-~ ~u2 
,/2 

and 

(4.18) 

r 
(4.19) 

og-(z,,)= R2.j- R2.j_t 

The residual Hamiltonian ~ '  does not depend on ~ ,  I1, and 12. Thus the 
dynamics in this restricted phase space Sl does not depend on the other 
degrees of freedom. Hamiitonian (4.17) describes a 1.5-degree-of-freedom 
system. It has the form of the three-wave "paradigm" Hamiltonian~ one 
can recognize the primary resonance of H 1 and two side primary resonances. 
The pendulum phase space (~1,11) is coupled to the other variables 
through ~2 and the "rests" p + and p_.  The low-dimensional description 
of the motion is appropriate if 'P2 grows linearly and the "rests" remain 
constant. From the Hamiltonian (4.17) this is true if/2 remains small with 
respect to jV; then ~u 2 is the fast "time" variable which drives the diffusion 
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in the actions. Moreover, for infinite temperature, i.e., zero coupling, the 
phase space is foliated by unperturbed tori, and replacing the solution 
qf(t)=p~(O)t+q~(O) in (4.18), one obtains p_+ = 0  after straightforward 
calculations. Obviously, in the weak-coupling region p • remains small. 

We performed numerical simulations at T>> 1 to verify that this 
picture is correct at least in the weak-coupling regime. The results are 
displayed in Fig. 4 for T ~  30.2, N =  16, and confirm the validity of the 
low-dimensional representation of the motion: ~u2~ J V'. t ( Y ~ 2 . 0 8 )  and 
the "rests" remain almost constant with respect to the growth of ~u2 on 
appreciable durations, while 12 fluctuates about a value which is much 
smaller than ./r 

In the statistical regime t/t 2 starts to grow linearly, but, at a certain 
moment, when 1121 becomes of the order of ~4 r, it stops its linear growth. 
This is the warning that the resonance frame fixed at z,, is no longer 
appropriate. The change of dynamical regime of ~u 2 is due to the effect of 
side resonances, which drive the change in pj_~ and Pj+2, that in the end 
produces an increase of 12. This intricate effect could have been analytically 
computed only if we had taken into account a set of three resonances (four 
rotators) in the approximating Hamiltonian, which would have been a 
higher-order approximation than that of Hamiltonian (4.17). Therefore, we 
have verified in numerical experiments the simultaneous saturation of the 

Fig. 4. 
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linear growth of ~2 in correspondence with the increase of 12; this always 
happens when I1,.I reaches a significant fraction of ,4:. Thus,  we have to 
establish a heuristic criterion for the change to a new approximat ing  
Hamil tonian  of the form (4.17). Empirically, we change the frame when 
1121 =0 .5  x JV'; this defines T ,+ , .  The new approximat ing  Hamil tonian  
H(t, r,,+ 1) is consequently defined by the new canonical t ransformat ion in 
terms of the new values of pit) and/~ at time r , ,+, .  We have also checked 
that  changing by some 10-20% the criterion does not change significantly 
the results. When this is done we recover large sections of linear growth of 
'P2 and constancy of the "rests" during the mot ion  (see Fig. 5). This 
suggests the validity of the approximat ing  Hami l ton ian  (4.17) also in the 
statistical regime. 

Trapping  in either of the nonlinear resonances related to the two 
cosines of Eq. (4.17) was also observed in numerical experiments,  looking 
at the cylindric phase space ( I  t , ~L ) with ~'~ = ~u, _ x/T2 co + ~u 2 - x//-2 p + 
for the +-resonance.  To  this end we must choose an initial condit ion inside 
the side resonance; this requires d~,/dt(O)= x /~  co+ l Yl .  Assuming that  
the "rest" p§  is constant,  this is equivalent to imposing pj+~ =Pj+2 .  This 
is also trivially equivalent to representing the mot ion  in the frame of the 
side resonance. After this is done, bounded mot ion inside the +- resonance  
is easily detected. 
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Fig. 5. Plots of ~2 (full line) and p+ (broken line) versus time for T=7.32, i.e., in the 
statistical regime. The abrupt discontinuities shown by the two curves correspond to the times 
T, when the resonance frame is changed; this is done when I s = 0.5J/. 
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5. CLUSTERS OF RESONANCES 

Since the Hamiltonian H(t, T,,) gives a good description of the low- 
dimensional aspects of the dynamics generated by (1.I) in the weak- 
coupling limit, one can use the expression for the separatrix given by 
Hamiltonian H~ to detect when a resonance may be active. We define the 
mean activity parameter A as 

A - Z j  (time resonance j is active) 

(total time) x N 
(5.1) 

and the crossing rate g as the mean number of separatrix crossings per unit 
time. In Fig. 6 we show both A and g as functions of T, averaged over 
eight random initial conditions for N =  8 (it has been shown in numerical 
simulations tS) that both these parameters are independent of N). When T 
is large the probability that a pair of rotators is in resonance is small and 
furthermore the energy transfer among the rotators is negligible. Thus A 
and X are small. Decreasing the temperature below T ~  10, one observes an 
increase of both A and X, indicating the onset of large-scale chaos. The 
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Fig. 6. Plot of the activity .4 and crossing rate X versus temperature. The error bars indicate 
the variance over the eight initial conditions. The inset shows the labels of active resonances 
versus time. 
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Gibbs  calculat ion of A is also feasible and shows the same behavior  as the 
one repor ted  in Fig. 6. (6"8) 

In the inset of Fig. 6 we plot  the labels of active resonances versus 
time dur ing a run for T =  3.5: the frequent switching of the t ra jectory  from 
one resonance to another  or  its s imul taneous  presence in two nearby 
resonances makes  explicit  the dynamica l  mechanism responsible for the 
existence of large-scale chaos. It is also evident  from the inset, and  even 
clearer if one performs s imulat ions  with larger values of N, that  clusters of 
more  than two active resonances may form in the statistical regime. This 
effect should be taken into account  in the approx imat ing  Hami l ton ian ,  but  
for the s tudy of the t ransi t ion from the weak-coupling to the statistical 
regime it is enough to restrict considera t ion  to an app rox ima t ion  conta in-  
ing only one central  resonance,  such as the one leading to the Hami l ton ian  
H(t, ~.). 

This is further confirmed by the fact that  the format ion  of the clusters 
of different sizes is a statist ical  phenomenon,  regulated by the dynamics  of 
each resonant  pair  of rotators .  This is easily seen if one measures  the prob-  
abil i ty d is t r ibut ion  P(I) of clusters of size l of active resonances normal ized  
to the number  of t ime steps and of rotators .  As shown in Fig. 7, this is an 
exponent ia l  function P(1)~-e -st for var ious  values of T in the statistical 
regime and the slope of the exponent ia l  S is very close to - I n  A. The con- 
t inuous curves in Fig. 7 represent  the theoret ical  formula P(l)= At(1 - A ) Z  
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Fig. 7. Probability distribution P(I) for clusters of active resonances size I versus the cluster 
size for various temperatures T in the statistical regime: ( [] ) T = 3.07, A = 0.539; (x) T = 5.57, 
A = 0.421; (~)  T = 10.72, A = 0.258. Here A is the activity parameter defined in formula (5.1). 
For comparison we plot (1 -  A) 2 A I in all three cases (--). 
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where the factor ( 1 -  A)2 takes into account the inactive resonances at the 
borders of a cluster of active resonances. Thus, we guess that the exponen- 
tial behavior for large l is a consequence of the cluster formation being a 
Poisson independent process, essentially due to an independent visit of the 
resonances. 

6. B O U N D S  OF T H E  S T A T I S T I C A L  R E G I M E  

As observed above, the dynamics described by Hamiltonian (4.17) is 
that of a 1.5-degree-of-freedom system. In such a system, chaotic orbits 
flow from the primary resonance (HI)  to side resonances after the breakup 
of the last KAM torus. Chaotic transport directly connects close primary 
resonances. Before this breakup, diffusion in phase space is much slower 
and occurs through the thin stochastic layers of the Arnold web ~9~ formed 
by higher-order resonances. It is natural to expect that the temperature T,. 
corresponds to the transition to the large-scale chaotic regime. No estimate 
of the breakup threshold of the full three-resonance Hamiltonian (4.17) is 
available. Hence, we have followed the treatment of ref. 7, where the two- 
resonance Hamiltonian is studied in detail, and we have used the results 
contained there to estimate the breakup threshold, neglecting the effect of 
one of the side resonances. Therefore we introduce the overlap parameter 

4 
s+ - (6.1) 

o~_+JV 

It is the ratio of the width of the unperturbed separatrix to the distance of 
the side (4-) resonances. In the naive Chirikov treatment the transition to 
the large-scale chaotic regime occurs at resonance overlap, i.e., Is+] ~ 1; 
this value has been refined by a renormalization group treatment for the 

t r a n s  ~ 0.7.(7) "paradigm" two-resonance Hamiltonian to s+ 
In our high-degree-of-freedom system the overlap parameters are 

expected to have a statistical distribution ~ ( s + )  in the statistical regime. 
This is trivially not true if we perform a numerical simulation in the weak- 
coupling regime; here the distribution of overlap values is frozen close to 
the initial state. However, since the overlap parameters defined in (6.1) 
depend only on momenta, if we fix the initial condition according to a 
Maxwellian distribution of momenta,  the overlap distribution remains fixed 
in time. Hence, both in the statistical and in the weak-coupling regimes a 
canonical ensemble calculation of the overlap distribution is meaningful 
from two different points of view; in the former case any distribution of 
overlap relaxes to the equilibrium one, in the latter the initial equilibrium 
overlap distribution is conserved in time. Thus, we present here the calcula- 
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tion of the overlap distribution in the canonical ensemble. From (6.1) the 
overlap parameter is a function only of momenta p;. Moreover, the parti- 
tion function of model (1.1) is the product of two independent factors, 
depending on momenta and coordinates separately, Z =  ZpZq, with 

The calculation of the probability distribution of the overlap parameter is 
better performed after a simple change of variables. Let us perform the 
calculation for s+. One first observes that the inverse v+ of s+ is a linear 
function of the momenta 

1 2Ps+ 2-PJ+ 1-PJ  (6.3) 
s+ 8 

Therefore one can integrate the partition function (6.2) over the momenta 
which do not appear in v+ and, by a change of variables introducing v+, 
one rewrites Eq. (6.2) in the following form: 

41(~)3/2=~ dpsdps+ t dv+exp-~IP~+P~+ l +~(8v+ +Ps+Ps+~) 2] 
(6.4) 

The integration over pj, pj+ ~ leads to the probability distribution of v+, 
from which we obtain ~(s+)  

(16/3~ 
~(s+ )=  s2+, exp - \ ~ J  (6.5) 

where o~ff = (16/3/3~) t/2 is the normalization factor. As for other canonical 
averages, ~' depends only on/~ = T-1. The maximum of the distribution is 
at 

( 1 6 )  1/2 
Smax = ~ (6.6) 

is shown in Fig. 8 for s§ > 0  and three different values of T. When 
compared with numerical results for T =  2.9 (a value inside the statistical 
regime) which starts from a nonequilibrium initial condition (momenta are 
uniformly distributed in a finite interval and all coordinates are set to 
zero), not only is the qualitative behavior of ~ confirmed but, surprisingly 
enough, the agreement is also quantitatively good in view of the adopted 



Validity of Gibbs C a l c u l u s  6 2 3  

0 . 3 0  . . . . . . .  I . . . . . . . .  I 

P 

0.25 

0.20 

0.15 

0.10 - 

/ /  

0.00 ~ ~ . "~F ~ . . . . .  
1 0 -  100 101 S 102 

Fig. 8. Plot  of P(s) versus s for T =  10.9, T =  2.9, and T =  0.08; s =  0.7 is indicated by an 
arrow. The crosses result  from a numerical  s imula t ion  performed at T ~  2.9. 

approximations in the analytical prediction. As we increase the temperature 
from the statistical regime, the most probable overlap decreases, although 
still some fraction of resonances have a significant overlap. This is in agree- 
ment with the numerical observation that the system becomes less and less 
chaotic as the temperature increases. On the contrary, for smaller values of 
T the overlap is large on the average and one therefore observes large-scale 
chaotic motion. A rough estimate of the upper bound of the statistical 
regime is obtained requiring that the maximum of the distribution Smax 
equals st+ ans. This gives T t . . . .  ~ 10.9, which is close to the upper bound of 
the statistical regime. The estimate of this upper bound strongly depends 
on the form of the Hamiltonian (4.17) and its validity is a convincing 
indirect confirmation of the approximating dynamics given by Hamiltonian 
(4.17). Although this estimate of Ttran s is based on the evaluation of the 
overlap distribution in the statistical regime, one may be doubtful about 
it because we extend the reasoning to the transition region between the 
statistical regime and the weak-coupled regime, where the canonical dis- 
tribution is not expected to be valid. However, as we already remarked, 
we expect that in this transition region an initial canonical momentum 
distribution is invariant in time. Therefore, we may interpret the statistical 
distribution # ( s + )  as obtained from averaging over an ensemble of 
systems which are initially distributed according to a Maxwellian distribu- 
tion of momenta, and then extend the validity of our analysis into the 
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weak-coupling regime. Of course, we are here extending a nonequilibrium 
reasoning which implies relaxation to equilibrium to a region that does not 
present it, but this is intrinsic to any attempt to analyze the transition to 
large-scale chaos in many-dimensional systems. 

Using formula (6.5), it is also easy to estimate the chaotic fraction F 
of the phase-space as a function of temperature T, under the assumption 
that one can consider the global phase space as a product of subspaces 
corresponding to each resonance. Indeed, after a change of variables, we 
have 

F= e-X2 dx=erf\L3T(s,~_,,,)2 j j (6.7) 

It is a slowly decreasing function of T, which also follows quite well the 
dependence of the activity A on the temperature T in Fig. 6. Its value is 
still quite high at the weak-coupling boundary, of the order of 80%, but 
the curve F(T) has an inflection point at T,. detecting a fast increase of the 
chaotic fraction of the phase space up to the boundary of the statistical 
regime followed by a saturation of the same quantity inside the statistical 
regime. 

The strong-coupling boundary T s has a simple dynamical justification. 
Since we know that large-scale chaos sets in as we lower the energy (tem- 
perature) from the weak-coupling regime, we expect to reach the same 
chaotic regime as we increase the energy from the strong-coupling regime. 
Indeed, the onset of large-scale chaos occurs when the nonlinearity of 
the force between rotators comes into play and induces chaotic energy 
exchanges among the vibrational eigenmodes [recall that model (1.1) is 
nonintegrable so that other kinds of nonlinear phenomena, such as exact 
solitons, are excluded]. This happens for values of the energy well below 
the one of the separatrix of H~ ; it is the well-known energy of the transition 
to equipartition seen in anharmonic oscillators. ~~ This chaos happens as 
a consequence of the same mechanism of resonance overlap described for 
the weak-coupling side, but about a different and much more complex 
quasi-integrable limit, involving an integrable Hamiltonian which is linear 
in the action (thus making questionable even the applicability of the KAM 
theorem).l~l 

However, we can use again an argument based on Gibbs averages to 
get an estimate of T,. In fact, the nonlinearity of the force also affects the 
Gibbsian estimate of the specific heat Cv(T) and makes it depart from the 
harmonic equipartition law Cv(T)= 1 around T--0.1. The boundary tem- 
perature Ts, as indicated by the deviation of the Gibbsian Cv(T) from its 
low-temperature limit, can be estimated as the intersection of the tangent 
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of the left inflection point of C,,(T) versus T in linear scale with the line 
Cv(T)= 1. This yields T~0.08,  which is close to the estimate of Ts 
obtained from the time relaxation properties of the specific heat Cv(T) (see 
Fig. 2). The transition to the strong-coupling limit may also be understood 
from the point of view of the approximating Hamiltonian (4.17). Indeed, 
this limit corresponds to a strong resonance overlap induced by a very slow 
time dependence of (4.17). In this regime chaos becomes quite slow and 
inefficient. 1~2) We have therefore been able to delimit the region of agree- 
ment between ensemble and time averages using Gibbsian averages of 
appropriate dynamical observables. 

7. C O N C L U S I O N  

This paper has made one step toward deriving statistical mechanics 
from classical mechanics by using concepts from the theory of chaos. Namely 
it provided a way for Gibbsian theory to check its validity self-consistently 
in a model of coupled rotators. For such a model the high- and low-energy 
limits are integrable, but there is a sizable range of energy where finite time 
averages of observables agree with their Gibbsian estimates. The boundary 
temperatures between the statistical and the two integrable domains were 
computed using Gibbsian tools on dynamical observables. In particular, 
for the high-energy boundary the geometry of nonlinear resonances enabled 
the derivation of a new observable, the resonance overlap parameter of 
appropriate 1.5-degree-of-freedom Hamiltonian systems. 

Several directions are opened for future work. On this model, the use 
of chaotic transport theory could help in providing estimates of the mini- 
mum time necessary for the convergence of time averages. This model is 
characterized by a near-neighbor coupling, but a nonlocal interaction in 
angle space. Other models of coupled rotators may be investigated: 

�9 A mean-field model of globally coupled rotators with the same 
force tl3) which is similar to a one-dimensional plasma. 

�9 A near-neighbor model with local interaction. 

�9 A mean-field model of globally coupled rotators which would be 
reminiscent of the Boltzmann gas. 
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